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Abstract—A lincar stability theory is used to analyse the vortex instability of mixed convection boundary
layer flow in a saturated porous medium adjacent to an inclined surface where the wall temperature is a
power function of the distance trom the origin and the external flow is aiding and uniform. In the main
flow analysis. both the streamwise and normal components of the buoyancy force are retained in the
momentum equations. The present formulation permits the angles of inclination ranging from 0 to close
to 90 degrees from the horizontal. In addition. the present study provides new vortex instability results for
small angles of inclination (¢ < 25°) and more accurate results for large angles of inclination (¢ > 257)
than the previous study by Hsu and Cheng (ASME J. Heat Transfer 102, 544-549 (1980)), where the
normal component of the buoyancy force in the main flow was neglected.

1. INTRODUCTION

THERMAL buoyancy force plays a significant role in
forced convection heat transfer when the flow velocity
is relatively small and the temperaturce difference
between the surface and the free stream is relatively
large. Analyses of mixed convection have been per-
formed rather extensively for laminar boundary flows
along vertical, inclined, and horizontal flat surfaces
immersed in a viscous fluid (see, for example, refs. [1-
3], and the references cited therein). The analogous
problem of mixed convection in a saturated porous
medium has also attracted a number of researchers.
This is primarily due to a large number of technical
applications, such as storage of radioactive nuclear
waste materials, transpiration cooling, separation
process in chemical industries, filtration, transport
processes in aquifers, ground water pollution, etc.

Cheng {4] devcloped the similarity solutions for
mixed convection flow in a saturated porous medium
adjacent to impermeable horizontal surfaces. Simi-
larity solutions have been obtained for the special case
where the free stream velocity and wall temperature
vary according to the same power function of
distance. In a subsequent paper, Hsu and Cheng
[5] analysed the vortex mode of instability for a
horizontal mixed convection in a porous medium.
Minkowycz et al. [6] used the local non-similarity
method to study the buoyancy effects in the parallel
and stagnation forced flows in a porous medium
where the similarity solutions are not possible. The
influence of surfacc mass flux on mixed convection
over horizontal plates in a saturated porous medium
was examined by Lai and Kulacki [7].

Merkin [8] and Joshi and Gebhart [9] studied the
mixed convection boundary layer flow in a porous
medium adjacent to a vertical, uniform heat flux
surface. Unlike the isothermal wall case, a similarity
solution does not exist and this problem was solved by

using the method of matched asymptotic expansions.
For non-Darcy flows, the effects of flow inertia,
boundary and thermal dispersion on mixed con-
vection heat transfer over a vertical surface in a porous
medium have been studied by Ranganathan and
Viskanta [10] and Lai and Kulacki [11].

For an inclined surface, the buoyancy force causing
motion has a component in both the tangential and
normal directions. This causes a pressure gradient
across the boundary layer, leading to a theorctical
analysis more complicated than that for a horizontal
or a vertical surface. By neglecting the normal com-
ponent of buoyancy force, Cheng [12] showed that,
in the main flow analysis, the mixed convection
boundary layer flow over an inclined plate in a satu-
rated porous medium can be approximated by the
similarity solution for a vertical plate, with the gravity
component parallel to the inclined plate incorpor-
ated in the Rayleigh number. Following the same
approach, Hsu and Cheng [13] have applied a linear
stability analysis to determine the condition of onset
of stability for flow over an inclined surface. It is
apparent that the instability results in ref. [13] are not
valid for the angles of inclination {rom the horizontal
that are small. This is because the normal component
of the buoyancy force is responsible for the occurrence
of the longitudinal vortices ; and this component can-
not be neglected when the angles of inclination from
the horizontal are small.

The purpose of this paper is 1o re-examine the main
flow and vortex instability of mixed convection
boundary layer flow over an inclined plate in a satu-
rated porous medium, for the inclined angles from the
horizontal, ¢, ranging from 0 to close to 90°. The
wall temperature is a power function of the distance
from the origin. Both the streamwise and normal com-
ponents of buoyancy force are retained in the momen-
tum equations. This is in contrast to the previous
analyses by Cheng [12] and Hsu and Cheng [13]. that

2077



2078

J.-Y. JanG and K.-N. LIE

Greek symbols
a2 cquivalent thermal diffustvity

NOMENCLATURE
spanwise wave number p coeflicient of thermal expansion
¥ dimensionless base state stream function ] pseudo-similarity variable
F dimensionless disturbance stream 0 dimensionless base state temperature
function (0] dimensionless disturbance temperature
g acccleration due to gravity 7 volumetric heat capacity ratio of the
i complex number saturated porous medium to that of the
k dimensionless wave number fluid
K Darcy permeability u fluid viscosity
m cxponent on wall temperature relation 4 transformed streamwise coordinate,
M  mixed convection parameter J(Pe)
Nu, local Nusselt number P fluid density
p pressure ¥ stream function.
Pe  local Peclet number
Ra  Darcy modified local Rayleigh number
t time Superscripts
T temperature * critical value
u Darcy’s velocity in x-direction ! differentiation with respect
v Darcy’s velocity in y-direction to 5.
W Darcy’s velocity in z-direction
X coordinate in streamwise direction
y coordinate normal to bounding surface Subscripts
z coordinate in spanwise direction. 0 basic undisturbed quantities

1 disturbed quantities
o condition at infinity
condition at wall.
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are generally valid for large values of ¢. The present
resulting equations for the main flow do not admit
similarity solutions. They are solved by using a suit-
able variable transformation and employing an
efficient finite difference method similar to that
described in Cebeci and Bradshaw [14]. The stability
analysis is based on the linear theory. The resulting
eigenvalue problem is solved by using a variable step-
size sixth-order Runge-Kutta integration scheme in-
corporated with the Gram-Schmidt orthogonaliz-
ation procedure [15] to maintain the linear indepen-
dence of the eigenfunctions.

2. ANALYSIS

2.1. The main flow

Consider an inclined impermeable surface at T,
aligned parallel to a uniform free stream with velocity
U, and temperature 7, as shown in Fig. 1, where x
represents the distance along the plate from its leading
edge, and y represents the distance normal to the
surface. The wall temperature is assumed to be a
power function of x, i.c. T,, =T, +Ax", where 4
and m are constants. The angle of inclination, ¢, is
measured from the horizontal. The following con-
ventional assumptions simplify the analysis. (1) The
physical properties are considered to be constant,
cxcept for the deasity term that is associated with the
body force. (2) The convecting fluid and the porous

matrix are in local thermodynamic equilibrium.
(3) Darcy’s law and the Boussinesq approximation
are employed.

With these assumptions, the governing equations
are given by

u O
0x + oy 0 M
_K{o
u= o <~‘ + pg sin d)) 2)
—K{(tp
uo\ay
oT  ér AT &*T
U— +r—=a 5 P (4)
cy ox® Oy’
p=p. (1=B(T=-T,)) (5)

where K is the permeability of the saturated porous
medium; g is the coefficient for thermal expansion;
and « represents the equivalent thermal diffusivity.
The other symbols are defined in the nomenclature.

The pressure terms appearing in equations (2) and
(3) can be eliminated through the cross-differ-
entiation. By applying the boundary layer assump-
tions (0/0x « &/dy, v « u) and introducing the stream
function , which automatically satisfies equation (1),
equations (1)—(5) become
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FiG. 1. Physical model.
a2 T
¢ ";_p*qﬁKCT O—icos q5) ©6) Ra = P=9PK(T —To)x
oy uo \oy a= a
T _ oy oT _ T 7 is the local Rayleigh number.

~ =07 . . . .
oy 0x  0Ox 0y ay? It is noted that M = Ra/Pe*? is the mixed con-
vection parameter, which measures the relative

The boundary conditions for this problem are ! :
importance of free to forced convection. M = 0 cor-

x=0, y>0 @ -y T=T responds to the case of purely forced convection.
’ ’ T dy *© * In terms of new variables, it can be shown that the
o velocity components and the local Nusselt number are
x>0 y=0, EZO’ T=T,=T,+Ax" given by
o =y
y — 00, a—y=um, T=T,. ) ay
The following dimensionless variables are intro- v = —?—l// — —P 1z <f+§ o qf)
duced: dx 2x
) o2 Nu, = —Pe'’?0’. (13)
Lo 2.2. The disturbance flow
¢(x) = Pe! The standard method of linear stability theory
W(x,p) in which the instantaneous values of the velocity,
f&m = o Pe'? pressure and temperature are perturbed by small
amplitude disturbances and the mean flow quantities
0(E,n) = T-T, ©) are subtracted, with terms higher than first order in
’ T.,—T, disturbance quantities being neglected. Then we get

where Pe = u. x/a is the Peclet number. the following disturbance equations:

Then equations (6) and (7) become ou, Ov, Ow, 0 14
co0 g ox dy dz (14
"’:M':gsmqbﬁ —cosq§<mB+ »—2—59>:| (10)

op,
w=—r (apx pygﬂsmch) (15)

2
¢
(i)

o = < ¢ 60>
2 0¢ apl
ve=—"{%" —pgBcos ¢T, (16)
with boundary conditions # Y
g = = -~ K0
fE0) =0, 00 =1 -1 (17
F(E o) =1, 0(Z00)=0 (12) g
where a prime denotes differentiation with respect to A@L Ju 8T, + v, oT, 6T°
. d ot 8 6 ox
1;an
Ra oT, 0T, 0°T, ©0°T,
M= P2 + 5; <6x 2 + 022 (18)
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where the subscripts 0 and 1 signify the mcan flow
and disturbance components respectively, and A is the
ratio of the volumetric heat capacity of the saturated
porous medium to that of the fluid.

Following the method of order of magnitude analy-
sis described in detail by Hsu and Cheng [5], the terms
fu,/6x and @2T,/éx? in Cquallom (14) and (18) can
be neglected. The omission of ¢u, /.y in equation (14)
implies the existence of a disturbance strcam function
Y, such that

(19)

Eliminating p, from equations (15)—(17), and with the
aid of equation (19), Icads to

w, W, p,gpK  aT
w00 _ 9K G (20)
cz Oxoy I iz
é? 02 ) )’K
G AN 0 ‘o
oy cZ” H z
oT,  oT,  oT, T,
fo Uy U oA
ct CX ) ¢X

As in Hsu and Cheng [5]. we assume the three-
dimensional disturbances for neutral stability arc of
the form

W y.uy, T)) =[x, »), ate p), Tx, »)] - exp [iaz]
(23)

where « is the spanwisc periodic wave number. Sub-
stituting equation (23) into equations (20)—(22) yiclds

Y pLgPK.
ati — éxrﬂ,y = p —- g sin ¢T (24)

=] ~ 3K -
%—l/,/ —a’y =~ P9 ia cos T (25)

ap? t
oF LN\ of  of et .o,

o (_}}5 —aT|=ugy +vg 5 +i — iy (’1 .
(26)

Equations (24)-(26) are solved based on the local
similarity approximation [5]. wherein the disturb-
ances are assumed to have wcak dependence in the
streamwise direction (i.e. ¢/0& « ¢/¢n).

We let

_ ey
F(n) i Po 2

1(x, )

Gy =
jod N
Pe'?

X
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T(x. 3
) A
ax
k= pio (27)

One gets the following system of equations for the
local similarity approximations:
. PR n .
G = ME- sin (}5@—5/\1['” (28)

F'—k*F = —ME&k cos O 29)

~

£ Ay
G)”—kZG):mf”@f(-)’( 1+5 "">

<

o

l\)Q

g C

G & () B
+ ml + 5 hz 0 | +kEOF. (30)
Then the substitution of G and ® from equations
(28) and (29) into equation (30) yiclds

of

I ‘ N .
F"+ 7</' + & )F’” (m_/”+2k‘+ (Mé sin ¢

f‘n

1
+ 5 nM cos ()) <m()

1 hYd N ) N .
-k <f+<;‘;'/:> F+k? (mf’+lr+M§ sin¢
Z 5

E¢0
><<m() 5 <:

with the boundary conditions

Z()') +M¢1cos</>0'>F: 0 (1)

F(0) = F'(0) = F(o0) = F'(0) =0.  (32)
Equation (31) along with its boundary condition,
equation (32), constitutes a fourth-order system of
linear ordinary differential equations for the dis-
turbance amplitude distributions F(#). For fixed m,
M and ¢, the solution F is an eigenfunction for the

eigenvalues ¢ and k.

3. NUMERICAL METHOD OF SOLUTION

Equations (10)—(12) for the mean flow were solved
by an implicit finite difference scheme similar to, but
modified from, that described in ref. [14]. Its details
are omitted here. In the stability calculations, the dis-
turbance equations are solved by separately inte-
grating two linearly independent integrals. The full
equations may be written as the sum of two linearly
independent solutions F() = F, +c¢F,. The two inde-
pendent integrals F, and F, may be chosen so that
their asymptotic solutions are
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Fy=exp(—kn), F,=exp(=8p (33)

where

Equation (31) with boundary condition, equation
(32), is then solved as follows. For specified m, M, ¢,
and &, & is guessed. Using equations (33) as starting
values, the two integrals are integrated separately
from the outer edge of the boundary layer to the
wall using a sixth-order Runge-Kutta variable size
integrating routine incorporated with the Gram-
Schmidt orthogonalization procedure [15] to main-
tain the linear independence of the eigenfunctions.
The required input of the base flow to the disturbance
equations is calculated, as necessary, by linear inter-
polation of the stored base flow. From the values of
the integrals at the wall, ¢ is determined using the
boundary condition F(0) = 0. The second boundary
condition F”(0) = 0 is satisfied only for the appro-
priate value of the eigenvalue . A Taylor series expan-
sion of the initial guess of ¢ provides a correction
scheme for the initial guess of £. Tterations continue
until the second boundary condition is sufficiently
close to zero (< 10 °, typically).

4. RESULTS AND DISCUSSIONS

Figure 2 shows the effect of the inclination angles
¢ on the dimensionless tangential velocity and
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temperature profiles across the boundary layer for
m=0, M =1, and & =10. It is seen that, as would
be expected, the dimensionless tangential velocity
increases with increasing value of ¢. It is also seen
that, as ¢ increases, the temperature boundary layer
thickness decreases and hence the temperature gradi-
ent near the wall increases. The dashed lines represent
the similarity solutions for an equivalent vertical plate
[12], where the normal component of the buoyancy
force is neglected in the main flow. It is noted that the
cquivalent vertical plate solutions have been trans-
formed to present (&, i) coordinates for easy com-
parison with the non-similar solutions. It should be
noted that, at ¢ = 0", the equivalent vertical plate
solutions (dashed lines) are strictly invalid. Note that
large calculated differences from the equivalent ver-
tical plate results arc apparent for ¢ < 25°. That is,
the discrepancy is getting larger for small angles of
inclination. It is also revealed that the equivalent
vertical plate results underestimate the heat transfer
rate.

Representative velocity and temperature profiles
for ¢ = 0" and ¢ = 10" arc presented in Figs. 3 and
4, respectively, for various values of the buoyancy
force parameter M at m = 0 and £ = 10. As the buoy-
ancy force parameter M is increased, free convection
effects, as expected, are enhanced near the boundary
and give rise to greater velocities and temperature
gradients near the wall. The local non-similarity solu-
tions of Minkowycz ¢t al. [6] for a horizontal plate
are also included in Fig. 3. It is shown that our present
results are in excellent agreement with those of ref.

3 2 1 o1
9
Y om=0 |

‘ M=1
8 E=10

= 45° Present results
7 ==~ Equivalent vertical

plate result [12]

fr s

& = 0°, 10°, 25°, 45°

1
0 02 04 06 08

Fic. 2. Tangential velocity and temperature profiles for different angles of inclination form =0, M = 1,
£=10
& .
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F1G. 3. The tangential velocity and temperature profiles for selected values of M for ¢ = 0°, m = 0, ¢ = 10.

1.2

24

08 28

0.9

08

0.7

0.6

0.5

0.4

0.3

0.2

0.1

n
555 4 3 2 1 01
- 1 | 1 ]
m=0
$b=10° 0.9
5 £=10
M=2 Present result Jo8
45 ——— Equivalent vertical
\ plate result [12]
\ —o7
4= \2
\ M=01,0512 Jos
g 35 AN /
\ —os
1 \ [
3 /
AN A1) -l 04
N i Vi
25 —\\l \ o il
~ N 4 / —os3
0.5 e N I, l/
2 > X 4y
. 05 \\\ / /, /, t -l 02
S~ — g 7 2z,
~§§~ V4 ,/ 7
15 S~ - /, — 0.1
0.1 ~—~Z,
e = — SITL, ==
1 r--ro—t== 0
0 02 04 06 08 1 12 14 16 18 2
m

F1G. 4. The tangential velocity and temperature profiles for selected values of M for ¢ = 10°, m =0,

&=10.



Vortex instability of mixed convection flow over horizontal and inclined surfaces in a porous medium

2083

40
38

38

34

32

30

28

26

Pe

24

22
20

18

18 1.8 2 22 24

F1G. 5. Neutral stability curves for selected angles of inclination for m =0, M = 1. (Dashed lines are
presented for equivalent vertical results [13].)

[6]. It is also seen from Fig. 4 that a very large error
in transport prediction may arise from the equivalent
vertical plate result when the buoyancy force par-
ameter M increases.

Figure 5 shows the neutral stability curves for selec-
ted values of ¢ (0°, 5°, 15, 25° and 35") at m =0
and M = 1. It is seen that as the inclination angle ¢
increases, the neutral stability curves shift to higher
Peclet number and higher wave number, indicating a
stabilization of the flow to the vortex stability. The
dashed lines denote the stability analysis from Hsu
and Cheng [13], where the normal component of the
buoyancy force was not included in the main flow. It
is shown that as ¢ decreases, the two sets of results
deviate more. This is due to the fact that for small ¢
the normal component of the buoyancy is not small,
so it cannot be neglected.

The critical Peclet numbers as a function of incli-
nation angles for m = 0 are plotted in Fig. 6 for vari-
ous values of buoyancy force parameter M (M = 0.1,
0.5, 1 and 5). It can be seen that the flow becomes
more susceptible to the vortex instability as the buoy-
ancy force parameter increases. The dashed lines rep-
resent the equivalent vertical stability results [13],
where the normal component of the buoyancy force
was neglected. It is also seen that the equivalent ver-
tical plate assumption leads to significant errors in the
stability results as ¢ decreases from 25° down to the
horizontal orientation. In addition, as M increases,
the deviation in the two sets of results is seen to
become larger.

Figure 7 shows the critical Peclet numbers of a
horizontal plate (¢ = 0°) as a function of the buoy-

ancy force parameter M for different values of the
index of power m (m= —0.5, 0, 0.5 and 1). For
m = 0.5 (constant wall heat flux), our present results
are in good agreement with those of Hsu and Cheng
[5], where the similarity solutions can be obtained. It
is observed that the critical Peclet number is a rather
strong function of m. The larger the value of m, the
more stable the flow for the vortex instability. This is
because as m increases, the streamwise temperature
increases. Consequently the flow is more stable.

5. CONCLUSIONS

A linear stability analysis is made to re-examine the
vortex instability of the mixed convection boundary
layer flow over horizontal and inclined surfaces
embedded in porous media. Both the streamwise
and normal components of the buoyancy force are
retained in the momentum equations. Therefore, the
present results are valid for the angles in the range of
0° to close to 90° from the horizontal. The results
show that the flow becomes less susceptible to vortex
mode of disturbances as the buoyancy force is
decreased or the plate inclination is increased from
the horizontal. It is also found that as the index of
power law m increases, the flow becomes less sus-
ceptible to the vortex instability. Moreover, the main
flow and stability results based on the equivalent ver-
tical plate assumptions are found to be inadequate if
the angle of inclination from the horizontal is less than
25°. It should be noted that all the results are based
on Darcy’s flow model, therefore, they are valid
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INSTABILITE TOURBILLONNAIRE DE LA CONVECTION MIXTE SUR DES
SURFACES HORIZONTALES ET INCLINEES DANS UN MILIEU POREUX

Résumé—Une théorie lincaire de stabilité est utilisée pour analyser P'instabilit¢ tourbillonnaire de
I’écoulement a couche limite de la convection mixte dans un milieu poreux saturé adjacent a une surface
inclinée dont la température de paroi est une fonction puissance de la distance a partir de I'origine,
I'écoulement externe étant favorable et uniforme. Dans P'analyse de I’écoulement principal, on considére
dans les équations d’impulsion a la fois les composantes normale et longitudinale de la force de flottement.
La présente formulation concerne un angle d’inclinaison allant de zéro jusqu’a 90 degrés a partir de
I’horizontale. On trouve des résultats nouveaux d’instabilité tourbillonnaire pour les petits angles
d’inclinaison (¢ < 25%) et des résultats pour les grands angles (¢ > 25°) plus précis que dans étude de
Hsu et Cheng (ASME J. Heat Transfer 102, 544-549 (1980)), ou la composante normale de la force de
flottement a été négligee.

WIRBELINSTABILITAT BEI DER MISCHKONVEKTION AN WAAGERECHTEN UND
GENEIGTEN OBERFLACHEN IN EINEM POROSEN MEDIUM

Zusammenfassung—Mit Hilfe einer linearen Stabilitdtstheorie wird die Wirbelinstabilitat bei der Grenz-
schichtstrémung unter Mischkonvektion in einem gesittigten pordsen Medium analysiert. Dieses pordse
Medium grenzt an eine geneigte Oberflache, wobei die Wandtemperatur sich gemiB einer Potenzfunktion
mit dem Abstand von der Anstromkante dndert. Die duBere Strdmung ist mit der Auftriebsstrémung
gleichgerichtet und gleichmiBig. Die Impulsgleichungen fiir die Hauptstrdomung enthalten zwei Kom-
ponenten fiir die Auftriebskraft, eine in Strémungsrichtung und eine senkrecht dazu. Die vorliegende
Formulierung erlaubt Neigungswinkel beziiglich der Waagerechten zwischen 0° und nidherungsweise 90°.
Dariiberhinaus werden neue Ergebnisse fur die Wirbelinstabilitdt bei kleinen Neigungswinkeln (¢ < 25°)
vorgelegt und fiir groe Neigungswinkel (¢ > 25°) genauere Ergebnisse, als sie in einer friiheren Unter-
suchung von Hsu und Cheng (ASME J. Heat Transfer 102, 544-549 (1980), enthalten sind, wo die
Normalkomponente der Auftriebskraft vernachldssigt worden war.

BHXPEBASI HEYCTOMYUBOCTH TEUEHHUS MPY CMEWMAHHON KOHBEKLIMH HAJ
TOPU3OHTAJILHON U HAKJIOHHOM ITOBEPXHOCTAMMY, NOMEIEHHBIMH B
MNOPUCTYIO CPEY

Annoramma—JIuHeliHas Teopus yCTOHYMBOCTH MCIONIb3YETCS I aHAJIM3a BUXPEBOH HEYCTOHYMBOCTH
NpH CMEILIAHHOHW KOHBEKLUHMH B MOrPAaHHYHOM CJIO€ B HACBHILICHHOH MOPHCTOM cpeje, NMpUieraioulell K
HAaKJIOHHOHW MOBEPXHOCTH, NPHYEM TEMIEPATypa CTCHKH SBJIAETCA CTeMeHHOM (yHKuHMed paccrosHus, a
BHELIHEE TEYEHHE — CMYTHLIM M OJHOPOAHBLIM. [IpH aHa/IM3e OCHOBHOTO TeYEHHS B YPABHEHHH COXpaHe-
HUS KOJIHYECTBA JABHXXEHHUS YYHTBHIBAIOTCS COCTABJIAIOUIME MOABEMHOMN CHIIBI, HAallPaBJIEHHbIE MO MOTOKY
U 110 HOpMas| K HeMy. B npeanoxennoif GopmyTHpoBKe JOMYCKAaeTCA U3MEHEHHE YIJIOB HakJioHa ot 0
1o noutH 90° oT ropusonTaim. ITpuBoAATCS HOBBIE PE3yNbTAThI [UIS BHXPEBOH HEYCTOWYMBOCTH HpPH
MaJIbIX yIrjlax HakJgoHa (¢ < 25°), a Taxxke GoJsice TOWHBIE Pe3yJbTaThl MUIA GonblunX yrios (¢ > 25°),
4eM MOJYYEHHBIE B MpeabiayiieM uccnegoBanun Xcy H Uenra (ASME J. Heat Transfer 102, 544-549
(1980)), rae HOpMaIbHas COCTABJIAIOIIAN NOABCMHOM CHIIBI B OCHOBHOM TEY€HHH HE YYMTHIBAIACD.



