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Abstract-A linear stability theory is used to analyse the vortex instabllity of mixed convection boundary 
layer flow in a ?dtUrdled porous medium adjacent to an inclined surface where the wall temperature is a 
power function of the distance from the origin and the external flow is aiding and uniform. In the main 
flow analysis, both the streamwise and normal components of the buoyancy force are retained in the 
momentum equations. The prcscnt formulation permits the angles of inclination ranging from 0 to close 
to 90 degrees from the horizontal. In addition. the present study provides new vortex instabi!ity results for 
small angles of inclination (4 < 25 ) and more accurate results for large angles of inclination (4 > 25 ) 
than the previous study by Hsu and Cheng (ASME J. Hear Trms/~r 102, 544-549 (1980)), where the 

normal component of the buoyancy force in the main flow was neglected. 

1. INTRODUCTION 

THERMAL buoyancy force plays a significant role in 
forced convection heat transfer when the flow velocity 
is relatively small and the temperature difference 
between the surface and the free stream is relatively 
large. Analyses of mixed convection have been per- 
formed rather extensively for laminar boundary flows 
along vertical, inclined, and horizontal flat surfaces 

immersed in a viscous fluid (see, for example, refs. [I& 
31, and the references cited therein). The analogous 
problem of mixed convection in a saturated porous 
medium has also attracted a number of researchers. 
This is primarily due to a large number of technical 
applications. such as storage of radioactive nuclear 
waste materials, transpiration cooling, separation 
process in chemical industries. filtration, transport 
processes in aquifers. ground water pollution, etc. 

Cheng [4] devclopcd the similarity solutions for 
mixed convection flow in a saturated porous medium 
adjacent to impermcablc horizontal surfaces. Simi- 

larity solutions have been obtained for the special case 
where the free stream velocity and wall temperature 
vary according to the same power function of 
distance. In a subsequent paper. Hsu and Cheng 
[5] analysed the vortex mode of instability for a 
horizontal mixed convection in a porous medium. 
Minkowycz er ul. [6] used the local non-similarity 
method to study the buoyancy effects in the parallel 

and stagnation forced flows in a porous medium 
where the similarity solutions are not possible. The 
influence of surface mass flux on mixed convection 
over horizontal plates in a saturated porous medium 
was examined by Lai and Kulacki [7]. 

Merkin [8] and Joshi and Gebhart [9] studied the 
mixed convection boundary layer flow in a porous 
medium adjacent to a vertical, uniform heat flux 
surface. Unlike the isothermal wall cast, a similarity 
solution does not exist and this problem was solved by 

using the method of matched asymptotic expansions. 
For non-Darcy flows, the effects of flow inertia, 
boundary and thermal dispersion on mixed con- 
vection heat transfer over a vertical surface in a porous 
medium have been studied by Ranganathan and 
Viskanta [IO] and Lai and Kulacki [ll]. 

For an inclined surface, the buoyancy force causing 
motion has a component in both the tangential and 
normal directions. This causes a pressure gradient 
across the boundary layer, leading to a theoretical 
analysis more complicated than that for a horizontal 
or a vertical surface. By neglecting the normal com- 
ponent of buoyancy force, Cheng [I21 showed that, 
in the main flow analysis, the mixed convection 
boundary layer flow over an inclined plate in a satu- 
rated porous medium can be approximated by the 
similarity solution for a vertical plate, with the gravity 
component parallel to the inclined plate incorpor- 
ated in the Rayleigh number. Following the same 
approach, Hsu and Chcng [I31 have applied a linear 
stability analysis to determine the condition of onset 

of stability for flow over an inclined surface. It is 
apparent that the instability results in ref. [ 131 are not 
valid for the angles of inclination from the horizontal 
that are small. This is because the normal component 
of the buoyancy force is responsible for the occurrence 
of the longitudinal vortices ; and this component can- 
not be neglected when the angles of inclination from 
the horizontal are small. 

The purpose of this paper is to re-examine the main 
flow and vortex instability of mixed convection 
boundary layer flow over an inclined plate in a satu- 
rated porous medium, for the inclined angles from the 
horizontal, d, ranging from 0” to close to 90 The 
wall temperature is a power function of the distance 
from the origin. Both the streamwise and normal com- 
ponents of buoyancy force are retained in the momen- 
tum equations. This is in contrast to the previous 
analyses by Cheng [12] and Hsu and Cheng [l3]. that 
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NOMENCLATURE 

spanwise wave number 
dimensionless base state stream function 
dimensionless disturbance stream 
function 
acceleration due to gravity 
complex number 
dimensionless wave number 
Darcy permeability 
exponent on wall temperature relation 
mixed convection parameter 

local Nusseh number 
pressure 
local Peclet number 
Darcy modified local Rayleigh number 

time 
temperature 
Darcy’s velocity in x-direction 
Darcy’s velocity in y-direction 
Darcy’s velocity in z-direction 
coordinate in streamwise direction 
coordinate normal to bounding surface 
coordinate in spanwise direction. 

coefficient of thermal expansion 
pseudo-similarity variable 
dimensionless base state temperature 
dimensionless disturbance temperature 
volumetric heat capacity ratio of the 
saturated porous medium to that of the 
fluid 
fluid viscosity 
transformed streamwise coordinate, 

d’(Pe) 
fluid density 
stream function. 

Superscripts 
* critical value 

differentiation with respect 
to yl. 

Subscripts 
0 basic undisturbed quantities 
1 disturbed quantities 
m condition at infinity 
W condition at wall. 

Greek symbols 
!I equivalent thermal diffusivity 

are generally valid for large values of 4. The present 
resulting equations for the main flow do not admit 
similarity solutions. They are solved by using a suit- 
able variable transformation and employing an 
efficient finite difference method similar to that 
described in Cebeci and Bradshaw [14]. The stability 
analysis is based on the linear theory. The resulting 

eigenvaluc problem is solved by using a variable step- 
size sixth-order RungeeKutta integration scheme in- 
corporated with the Gram-Schmidt orthogonaliz- 
ation procedure [I51 to maintain the linear indepen- 
dence of the eigenfunctions. 

2. ANALYSIS 

Consider an inclined impermeable surface at T, 

aligned parallel to a uniform free stream with velocity 
I/, and temperature T, as shown in Fig. 1, where x 
represents the distance along the plate from its leading 
edge, and _r represents the distance normal to the 
surface. The wall temperature is assumed to be a 
power function of X, i.e. T, = T(, +.4x”‘, where A 
and nz are constants. The angle of inclination. 4, is 
measured from the horizontal. The following con- 
ventional assumptions simplify the analysis. (1) The 
physical properties are considered to be constant, 
except for the density term that is associated with the 
body force. (2) The convecting fluid and the porous 

matrix are in local thermodynamic equilibrium. 
(3) Darcy’s law and the Boussinesq approximation 

are employed. 
With these assumptions, the governing equations 

are given by 

(1) 

(2) 

(3) 

P=P,(I--~(T-T,)) (5) 

where K is the permeability of the saturated porous 
medium ; /I is the coefficient for thermal expansion ; 
and LY represents the equivalent thermal diffusivity. 
The other symbols arc defined in the nomenclature. 

The pressure terms appearing in equations (2) and 
(3) can be eliminated through the cross-differ- 
entiation. By applying the boundary layer assump- 
tions (a/a.*_ <c a/a_r. tl<< u) and introducing the stream 
function ti, which automatically satisfies equation (I), 
equations (l)-(5) become 
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FE. I. Physical model. 

The boundary conditions for this problem are 

a* 
x=0, y>O, -=u,, T=T, 

ay 

x > 0, y = 0, g = 0, T = T, = T, +Ax” 

The following dimensionless variables are intro- 
duced : 

r/(x, y) = ‘, Pelf2 

5(.x) = Pelf2 

where Pe = u,x/cc is the Peclet number. 
Then equations (6) and (7) become 

(9) 

f’“=M 1 <sin@-cosf$ ( 53% ‘1 
MB+-- -- -0’ 

2ag 2 )I (10) 
+?o+++"+f$) (11) 

with boundary conditions 

f’(5,O) = 0, O(i;, 0) = 1 

.f’(L co) = 1, O(L Q) = 0 (12) 

where a prime denotes differentiation with respect to 
q;and 

is the local Rayleigh number. 
It is noted that A4 = Ra/Pe3’* is the mixed con- 

vection parameter, which measures the relative 

importance of free to forced convection. M = 0 cor- 
responds to the case of purely forced convection. 

In terms of new variables, it can be shown that the 

velocity components and the local Nusselt number are 

given by 

Nu 
I; 

= -pe’:2(Y. (13) 

2.2. The disturbancejow 

The standard method of linear stability theory 

in which the instantaneous values of the velocity, 
pressure and temperature are perturbed by small 
amplitude disturbances and the mean flow quantities 
are subtracted, with terms higher than first order in 
disturbance quantities being neglected. Then we get 
the following disturbance equations : 

(14) 

(15) 

c!L+3+gLo 
ay 

-p,gB sin $T, 

-p,gB ~0s 4T, (16) 

--K aP, 
WI =----- 

P aZ 

. aT, aT, dT, aT, 
~,t+%a,Y+““ay+“‘~ 

7 2 a*T !IxI+dT!+_! 
aY* 

(18) 
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where the subscripts 0 and I signify the mean flow 
and disturbance components respectively, and 2 is the 
ratio of the volumetric heat capacity of the saturated 
porous medium to that of the fluid. 

Following the method of order of magnitude analy- 
sis described in detail by HSLI and Chcng [5]. the terms 
itr,!~s and ?‘T,/?s in equations (14) and (IX) can 
be neglected. The omission of iu, /i.\- in equation (14) 
implies the existence of a disturbance stream function 

$, such that 

(19) 

Eliminatingp, from equations (I 5)-( 17). and with the 
aid of equation (19), Icads to 

As in Hsu and Cheng [5]. we assume the threc- 
dimensional disturbances for neutral stability arc of 
the form 

(4+I.UIr T, ) = [$(.Y. y). C(.v. y), 7(x. y)] . cxp [irr:] 

(23) 

where (I is the spanwisc periodic wave number. Sub- 
stituting equation (23) into equations (20)-(22) yields 

(26) 

Equations (24)-(26) are solved based on the local 
similarity approximation [5]. wherein the disturb- 
ances are assumed to have weak dependence in the 
streamwise direction (i.e. ?I?; << ?/?q). 

WC let 

G(v) = 
zi(.u. y) 

x pr’ 2 
.Y 

k = “.y 
PC>’ 2 (27) 

One gets the following system of equations for the 

local similarity approximations : 

(;=~(‘sin~~@-~~F” (28) 

F”-k’F= -M;k cos@ (29) 

Then the substitution of G and 0 from equations 

(28) and (29) into equation (30) yields 

with the boundary conditions 

I;(O) = F”(0) = f+a) = F”(m) = 0. (32) 

Equation (31) along with its boundary condition, 
equation (32), constitutes a fourth-order system of 
linear ordinary differential equations for the dis- 
turbance amplitude distributions F(q). For fixed m, 
M and 4, the solution F is an eigenfunction for the 
eigenvalues 5 and k. 

3. NUMERICAL METHOD OF SOLUTION 

Equations (IO)-( 12) for the mean flow were solved 
by an implicit finite difference scheme similar to, but 
modified from, that described in ref. [14]. Its details 
are omitted here. In the stability calculations, the dis- 
turbance equations are solved by separately inte- 
grating two linearly independent integrals. The full 
equations may be written as the sum of two linearly 
independent solutions F(u) = F, +cF?. The two inde- 
pendent integrals F, and FZ may be chosen so that 
their asymptotic solutions are 
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F, =exp(-kq), FZ =exp(-Rq) (33) 

where 

B = :(B, +&C+4W) 

B2 = k’-tm. 

Equation (31) with boundary condition, equation 
(32), is then solved as follows. For specified n?, M, 4, 

and k, 2 is guessed. Using equations (33) as starting 
values, the two integrals are integrated separately 
from the outer edge of the boundary layer to the 
wall using a sixth-order Runge-Kutta variable size 
integrating routine incorporated with the Gram- 
Schmidt orthogonalization procedure [15] to main- 
tain the linear independence of the eigenfunctions. 
The required input of the base flow to the disturbance 
equations is calculated, as necessary, by linear inter- 
polation of the stored base flow. From the values of 
the integrals at the wall, c is determined using the 
boundary condition P(O) = 0. The second boundary 
condition F”(0) = 0 is satisfied only for the appro- 
priate value of the eigenvalue <_ A Taylor series expan- 
sion of the initial guess of < provides a correction 
scheme for the initial guess of <. Iterations continue 
until the second boundary condition is stl~ciently 
close to zero (< 10 ‘, typically). 

4. RESULTS AND DISCUSSIONS 

Figure 2 shows the effect of the inclination angles 
4 on the dimensionless tangential velocity and 

temperature profiles across the boundary layer for 
m = 0, M = I, and 5 = IO. It is seen that, as would 

be expected, the dimensionless tangential velocity 

increases with increasing value of 4. It is also seen 
that, as 4 increases, the temperature boundary layer 
thickness decreases and hence the temperature gradi- 
cnt near the wall increases. The dashed lines represent 
the similarity solutions for an equivalent vertical plate 
[II!], where the normal component of the buoyancy 
force is neglected in the main flow. It is noted that the 
cquivalcnt vertical plate solutions have been trans- 

formed to present (f, ~7) coordinates for easy com- 
parison with the non-similar solutions. It should be 
noted that, at 4 = 0 , the equivalent vertical plate 

solutions (dashed lines) are strictly invalid. Note that 
large calculated differences from the equivalent ver- 
tical plate results arc apparent for 4 < 25’. That is, 
the discrepancy is getting larger for small angles of 
inclination. It is also revealed that the equivalent 
vertical plate results underestimate the heat transfer 
rate. 

Representative velocity and temperature profiles 
for C/I = 0 and 4 = 10’ arc presented in Figs. 3 and 
4, respectively, for various values of the buoyancy 
force parameter Mat f?z = 0 and 5 = 10. As the buoy- 
ancy force parameter M is increased, free convection 
effects. as expected, are enhanced near the boundary 
and give rise to greater velocities and temperature 
gradients near the wall. The local non-similarity solu- 
tions of Minkowycz cut al. [6] for a horizontal plate 
are also included in Fig. 3. It is shown that our present 
results arc in excellent agreement with those of ref. 
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FIG. 2. Tangential velocity and temperature profiles for different angles of inclination for trt = 0, M = 1, 
t = IO. 
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FIG. 3. The tangential velocity and temperature profiles for selected values of A4 for 4 = O.‘, m = 0, 5 = 10. 
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FIG. 5. Neutral stability curves for selected angles of inclination for m = 0, M = 1. (Dashed lines are 
presented for equivalent vertical results [13].) 

[6]. It is also seen from Fig. 4 that a very large error 
in transport prediction may arise from the equivalent 

vertical plate result when the buoyancy force par- 
ameter M increases. 

Figure 5 shows the neutral stability curves for selec- 
ted values of 4 (O“, 5’, 15.‘, 25” and 35”) at m = 0 
and M = 1. It is seen that as the inclination angle 4 
increases, the neutral stability curves shift to higher 
Peclet number and higher wave number, indicating a 
stabilization of the flow to the vortex stability. The 
dashed lines denote the stability analysis from Hsu 
and Cheng [13], where the normal component of the 
buoyancy force was not included in the main flow. It 
is shown that as 4 decreases, the two sets of results 
deviate more. This is due to the fact that for small 4 
the normal component of the buoyancy is not small, 
so it cannot be neglected. 

The critical Peclet numbers as a function of incli- 
nation angles for m = 0 are plotted in Fig. 6 for vari- 
ous values of buoyancy force parameter A4 (M = 0.1, 
0.5, 1 and 5). It can be seen that the flow becomes 
more susceptible to the vortex instability as the buoy- 
ancy force parameter increases. The dashed lines rep- 
resent the equivalent vertical stability results [13], 
where the normal component of the buoyancy force 
was neglected. It is also seen that the equivalent ver- 
tical plate assumption leads to significant errors in the 
stability results as 4 decreases from 25” down to the 
horizontal orientation. In addition, as M increases, 
the deviation in the two sets of results is seen to 
become larger. 

Figure 7 shows the critical Peclet numbers of a 
horizontal plate (4 = 0”) as a function of the buoy- 

ancy force parameter M for different values of the 
index of power m (m = -0.5, 0, 0.5 and 1). For 
m = 0.5 (constant wall heat flux), our present results 
are in good agreement with those of Hsu and Cheng 
[5], where the similarity solutions can be obtained. It 
is observed that the critical Peclet number is a rather 
strong function of m. The larger the value of m, the 
more stable the flow for the vortex instability. This is 
because as m increases, the streamwise temperature 
increases. Consequently the flow is more stable. 

5. CONCLUSIONS 

A linear stability analysis is made to re-examine the 
vortex instability of the mixed convection boundary 
layer flow over horizontal and inclined surfaces 
embedded in porous media. Both the streamwise 
and normal components of the buoyancy force are 
retained in the momentum equations. Therefore, the 
present results are valid for the angles in the range of 
0” to close to 90” from the horizontal. The results 
show that the flow becomes less susceptible to vortex 
mode of disturbances as the buoyancy force is 
decreased or the plate inclination is increased from 
the horizontal. It is also found that as the index of 
power law m increases, the flow becomes less sus- 
ceptible to the vortex instability. Moreover, the main 
flow and stability results based on the equivalent ver- 
tical plate assumptions are found to be inadequate if 
the angle of inclination from the horizontal is less than 
25”. It should be noted that all the results are based 
on Darcy’s flow model, therefore, they are valid 
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FIG. 6. Critical Peclet numbers as functions of the inclined angle C/J for selected values of 
(Dashed lines are presented for equivalent vertical results [13].) 
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FIG. 7. Critical Peclet numbers as functions of M for selected values of m for Q, = o“, M = 1, 
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INSTABILITE TOURBILLONNAIRE DE LA CONVECTION MIXTE SUR DES 
SURFACES HORIZONTALES ET INCLINEES DANS UN MILIEU POREUX 

R&um&Une theorie lineaire de stabilitt est utiliste pour analyser I’instabilite tourbillonnaire de 
I’ecoulement a couche limite de la convection mixte dans un milieu poreux sature adjacent a une surface 
inclinee dont la temperature de paroi est une fonction puissance de la distance a partir de I’origine, 
l’ecoulement externe ttant favorable et uniforme. Dans I’analyse de I’ecoulement principal, on considere 
dans les equations d’impulsion a la fois les composantes normale et longitudinale de la force de flottement. 
La presente formulation concerne un angle d’inclinaison allant de zero jusqu’a 90 degrts a partir de 
fhorizontale. On trouve des resultats nouveaux d’instabilite tourbillonnaire pour les petits angles 
d’inclinaison (4 < 25‘) et des resultats pour les grands angles (4 > 25”) plus p&is que dans I’etude de 
Hsu et Cheng (ASME J. Heal Transfer 102, 54&549 (1980)), od la composante normale de la force de 

flottement a Ctt negligee. 

WIRBELINSTABILITAT BE1 DER MISCHKONVEKTION AN WAAGERECHTEN UND 
GENEIGTEN OBERFLACHEN IN EINEM PORijSEN MEDIUM 

Zusammenfassung-Mit Hilfe einer linearen Stabihtatstheorie wird die Wirbelinstabilitat bei der Grenz- 
schichtstriimung unter Mischkonvektion in einem geslttigten poriisen Medium analysiert. Dieses porose 
Medium grenzt an eine geneigte Oberflache, wobei die Wandtemperatur sich gemal einer Potenzfunktion 
mit dem Abstand von der Anstrijmkante andert. Die auBere Stromung ist mit der Auftriebsstromung 
gleichgerichtet und gleichmagig. Die Impulsgleichungen fur die Hauptstrljmung enthalten zwei Kom- 
ponenten fur die Auftriebskraft, eine in Striimungsrichtung und eine senkrecht dazu. Die vorliegende 
Formulierung erlaubt Neigungswinkel beziiglich der Waagerechten zwischen 0” und naherungsweise 90 
Dariiberhinaus werden neue Ergebnisse fur die Wirbelinstabilitit bei kleinen Neigungswinkeln (4 < 25 ) 
vorgelegt und fur groge Neigungswinkel (4 > 25”) genauere Ergebnisse, als sie in einer friiheren Unter- 
suchung von Hsu und Cheng (ASME J. Heat Transfer 102, 544-549 (1980), enthalten sind, wo die 

Normalkomponente der Auftriebskraft vernachlassigt worden war. 

BMXPEBAII HEYCTO@IMBOCTb TE’IEHHR I-IPM CMEIBAHHOm KOHBEKI@iM HAA 
FOPM30HTAflbHOH M HAKJ-IOHHOCi I-IOBEPXHOCTIIMM, I-IOMELLIEHHbIMM B 

I-IOPMCTYIO CPEAY 

.kIHOTallHn--nHHetiHan TeOpHK yCTOiiWiBOCTl4 ACnOnb3yeTCK LUIK aHanA3a BHXpeBOi? HeyCTOkNBOCTII 

npu cMeruaHHoir KoHBeKuwi B norpami~noM cnoe B uacbrmemtofi nopacrofi cpene, npunerammel K 
HaKnOHHOfi IIOBepXHOCTH,npH'IeM TeMWpaTypa CTeHKA IlBnlleTCIi CTeneHHOii @yHKLVfeti paCCTOKHH,-,,a 

BHeuwee TeqeHwe-cnyTfib,M A onHoponHbrM.llpw aHanW3e OCHOBHO~O TeqeH5iK B ypaeHeHuu coxpaHe- 

HHR KonwiecTBa nBwueHHII ywiTbrBaroTcn coCTaBnsIH)Lurle ~OLWMHO~~ cwnb~,iianpaBneHHbre no noToKy 

H II0 HOpMann K HeMy. B npe&nOwteHHOi? t$OpMynHpOBKe AOnyCKaeTCK &i3MeHCHAC yrnOB HaKnOHa OT 0 
iI0 IIOYT" 90” OT rOpH30HTEUIH. npHBO~TC,l HOBbIe pe3ynbTaTbl iVIlI BHXpeBOii HeyCTOfiWiBOCTll IIpH 

ManbIx yrnax HaKnoHa (4 I 25”), a -raKxe 6onee ToYnbre pe3ynbraTbI nnn 6onbmux yrnoe (4 > 25”), 
VeM nonyveuubte B npenbrnyweM nccnenouamin Xcy H geHra (ASME J. Heat Transfer 102, 544-549 


